Disable: To disallow or deactivate a function or circuit.
Enable: To allow or activate a function or circuit.
Fault: The problem in a nonfunctioning electrical circuit. It is usually due to an open circuit, short circuit, or defective component.

Float: A logic level in a digital circuit that is neither HIGH nor LOW. It acts like an open circuit to anything connected to it.
Gate: The basic building block of digital electronics. The basic logic gate has one or more inputs and one output and is used to perform one of the following logic functions: AND, OR, NOR, NAND, INVERT, exclusive-OR, or exclusive-NOR.

Hex: When dealing with integrated circuits, a term specifying six gates on a single IC package.

Inversion Bar: A line over variables in a Boolean equation signifying that the digital state of the variables is to be complemented. For example, the output of a two-input NAND gate is written $X=\overline{A B}$.

Johnson Shift Counter: A digital circuit that produces several repetitive digital waveforms useful for specialized waveform generation.
Logic Probe: An electronic tool used in the troubleshooting procedure to indicate a HIGH, LOW, or float level at a particular point in a circuit.

Logic Pulser: An electronic tool used in the troubleshooting procedure to inject a pulse or pulses into a particular point in a circuit.

NOT: When reading a Boolean equation, the word used to signify an inversion bar. For example, the equation $X=\overline{A B}$ is read " X equals NOT $A B$."
Quad: When dealing with integrated circuits, the term specifying four gates on a single IC package.
Repetitive Waveform: A waveform that repeats itself after each cycle.
Troubleshooting: The work that is done to find the problem in a faulty electrical circuit.

Truth Table: A tabular listing that is used to illustrate all the possible combinations of digital input levels to a gate and the output that will result.
Waveform Generator: A circuit used to produce specialized digital waveforms.

Problems

Section 3-1

3-1. Build the truth table for:
(a) a three-input AND gate.
(b) a four-input AND gate.

3-2. If we were to build a truth table for an eight-input AND gate, how many different combinations of inputs would we have?

3-3. Describe in words the operation of:
(a) an AND gate.
(b) an OR gate.

Section 3-2

3-4. Determine the logic level at W, X, Y and Z in Figure P3-4.

Figure P3-4

3-5. Write the Boolean equation for
(a) A three-input AND gate
(b) A four-input AND gate
(c) A three-input OR gate

3-6. Determine the logic level at W, X, Y and Z in Figure P3-6.

Figure P3-6

Section 3-3

3-7. Sketch the output waveform at X for the two-input AND gates shown in Figure P3-7.

(a)

(b)

Figure P3-7

3-8. Sketch the output waveform at X for the two-input OR gates shown in Figure P3-8.

Figure P3-8

3-9. Sketch the output waveform at X for the three-input AND gates shown in Figure P3-9.

Figure P3-9

C 3-10. The input waveform at A is given for the two-input AND gates shown in Figure P3-10. Sketch the input waveform at B that will produce the output at X.

(a)

(b)

Figure P3-10

C 3-11. Repeat Problem 3-10 for the two-input OR gates shown in Figure P3-11.

(a)

(b)

Figure P3-11

Section 3-4

3-12. Using Figure P3-12, sketch the waveform for the enable signal that will allow pulses 2,3 and 6,7 to get through to the receiving device.

Enable
signal
Figure P3-12

3-13. Repeat Problem 3-12, but this time sketch the waveform that will allow only the even pulses $(2,4,6,8)$ to get through.

Section 3-5

3-14. How many separate OR gates are contained within the 7432 TTL IC?
3-15. Sketch the actual pin connections to a 7432 quad two-input OR TTL IC to implement the circuit of Figure 3-18.

3-16. How many inputs are there on each AND gate of a 7421 TTL IC?
3-17. The 7421 IC is a 14 -pin DIP. How many of the pins are not used for anything?

Section 3-6

T* 3-18. What are the three logic levels that can be indicated by a logic probe?
T 3-19. What is the function of the logic pulser?

[^0]T 3-20. When troubleshooting an OR gate such as the 7432, when the pulser is applied to one input, should the other input be connected HIGH or LOW? Why?
T 3-21. When troubleshooting an AND gate such as the 7408, when the pulser is connected to one input, should the other input be connected HIGH or LOW? Why?
C T 3-22. The clock enable circuit shown in Figure P3-22 is not working. The enable switch is up in the enable position. A logic probe is placed on the following pins and gets the following results. Find the cause of the problem.

Figure P3-22

Probe on Pin	Indicator Lamp
1	Flashing
2	On
3	Off
7	Off
14	On

C T 3-23. Repeat Problem 3-22 for the following troubleshooting results.

Probe on Pin	Indicator Lamp
1	Flashing
2	Off
3	Off
7	Off
14	On

C T 3-24. Repeat Problem 3-22 for the following troubleshooting results.

Probe on Pin	Indicator Lamp
1	Flashing
2	On
3	Off
7	Dim
14	On

Section 3-7

3-25. For Figure P3-25, write the Boolean equation at X. If $A=1$, what is X ?

Figure P3-25

3-26. For Figure P3-26, write the Boolean equation at X and Z. If $A=0$, what is X ? What is Z ?

Figure P3-26

3-27. Using Figure P3-26, sketch the output waveform at X and Z if the timing waveform shown in Figure P3-27 is input at A.

Figure P3-27

Section 3-8

3-28. For Figure P3-28, write the Boolean equation at X and Y and build a truth table for each.

Figure P3-28

3-29. Determine the logic levels at W, X, Y and Z in Figure P3-29.

Figure P3-29

3-30. Using Figure P3-28, sketch the output waveforms for X and Y, given the input waveforms shown in Figure P3-30. $(X=\overline{A B}, Y=\overline{C D})$

Figure P3-30

Section 3-9

3-31. Determine the logic level at W, X, Y and Z in Figure P3-31.

Figure P3-31

3-32. Using Figure P3-32, sketch the waveforms at X and Y with the switches in the down (0) position. Repeat with the switches in the up (1) position.

Figure P3-32
3-33. In words, what effect does the switch have on each circuit in Figure P3-32?

3-34. For Figure P3-34, write the Boolean equation at X and Y and build a truth table for each.

Figure P3-34

[^0]: *The letter \mathbf{T} designates a problem that involves Troubleshooting.

