Summary of Capacitor and Inductor Facts:
 
Property Capacitor Inductor
Can't change instantaneously:  v  i
fully charged i=0, v=V 
looks like open circuit to DC
v=0, i=V/R 
looks like short circuit to DC
fully discharged v=0, i=V/R 
looks like short circuit to DC
i=0, v=V 
looks like open circuit to DC
time constant T=RC T=L/R
VOLTAGE

 
 
 

Charging Curve
 
 

CURRENT
Vfinal=V; Vo=0V charging

Io=V/R I Charging
Vo=VV Charging

Ifinal=V/R; Vo=0I charging
VOLTAGE

 
 
 
 
 

Discharging curve
 
 
 
 

CURRENT
Vo=VV Discharge

Io=-V/RI discharge

Vo=-IRV-discharge

Io=II-discharge


 
Property Capacitor Inductor
Basic Formula Q=CV, C=Q/V, V=Q/C 
i=C(dv/dt)

v=L(di/dt)
Energy Stored W=0.5CV^2 W=0.5LI^2
physical C= kA/d L=kAN^2/L
Series combination 1/Ct = 1/C1 + 1/C2 + 1/C3 +... Lt=L1 + L2 + L3 +...
Parallel combination Ct = C1 + C2 + C3 + ... 1/Lt=1/L1 + 1/L2 + 1/L3 +...
Reactance (AC) Xc=1/(2*pi*f*C) Xl=2*pi*f*L
Reactive Power: Pr=VrmsIrms Pr=V^2/Xc = I^2 Xc Pr=V^2/Xl = I^2 Xl

Universal Curves:
 
Ending at a final value
v=V(1-e^(-t/T)) 
ending at final value
 starts at zero, ends at positive value
number of time constants (T) % of final value
0 0%
1 63%
2 86%
3 95%
4 98%
5 99% (considered 100%)
Ending at zero
v=Ve^(-t/T
end at zero
starts at a positive value; ends at zero; 
v= -Ve^(-t/T
end at zero
starts at a negative value; ends at zero;
number of time constants (T) % of initial value
0 100%
1 37%
2 14%
3  5%
4  2%
5  1% (considered zero)

3/28/02-dw